Differential Contribution of Transcription Factors to Arabidopsis thaliana Defense Against Spodoptera littoralis

نویسندگان

  • Fabian Schweizer
  • Natacha Bodenhausen
  • Steve Lassueur
  • Frédéric G. Masclaux
  • Philippe Reymond
چکیده

In response to insect herbivory, Arabidopsis plants activate the synthesis of the phytohormone jasmonate-isoleucine, which binds to a complex consisting of the receptor COI1 and JAZ repressors. Upon proteasome-mediated JAZ degradation, basic helix-loop-helix transcription factors (TFs) MYC2, MYC3, and MYC4 become activated and this results in the expression of defense genes. Although the jasmonate (JA) pathway is known to be essential for the massive transcriptional reprogramming that follows herbivory, there is however little information on other TFs that are required for defense against herbivores and whether they contribute significantly to JA-dependent defense gene expression. By transcriptome profiling, we identified 41 TFs that were induced in response to herbivory by the generalist Spodoptera littoralis. Among them, nine genes, including WRKY18, WRKY40, ANAC019, ANAC055, ZAT10, ZAT12, AZF2, ERF13, and RRTF1, were found to play a significant role in resistance to S. littoralis herbivory. Compared to the triple mutant myc234 that is as sensitive as coi1-1 to herbivory, knockout lines of these nine TFs were only partially more sensitive to S. littoralis but, however, some displayed distinct gene expression changes at the whole-genome level. Data thus reveal that MYC2, MYC3, and MYC4 are master regulators of Arabidopsis resistance to a generalist herbivore and identify new genes involved in insect defense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Membrane Potential Variation and Gene Expression Induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis

BACKGROUND Biotic stress induced by various herbivores and pathogens invokes plant responses involving different defense mechanisms. However, we do not know whether different biotic stresses share a common response or which signaling pathways are involved in responses to different biotic stresses. We investigated the common and specific responses of Arabidopsis thaliana to three biotic stress a...

متن کامل

Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior.

Arabidopsis thaliana plants fend off insect attack by constitutive and inducible production of toxic metabolites, such as glucosinolates (GSs). A triple mutant lacking MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that are known to additively control jasmonate-related defense responses, was shown to have a highly reduced expression of GS biosynthesis genes. The myc2 m...

متن کامل

Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response

The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and...

متن کامل

ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana

ML (MD2-related lipid recognition) proteins are known to enhance innate immune responses in mammals. This study reports the analysis of the putative ML gene family in Arabidopsis thaliana and suggests a role for the ML3 gene in herbivory-associated responses in plants. Feeding by larvae of the Lepidopteran generalist herbivore Spodoptera littoralis and larvae of the specialist herbivore Plutell...

متن کامل

Insect oral secretions suppress wound-induced responses in Arabidopsis

The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013